
Project Report: Streets4MPI
Julian Fietkau Joachim Nitschke

May 8th, 2012

Project report for the course

“Parallel Programming”
Summer semester 2011 to winter semester 2011/12

Supervised by Julian Kunkel

Department of Informatics
University of Hamburg

Contents
1. Introduction 3

1.1. Project Task . 3

2. Traffic Simulation 3
2.1. Discrete Macroscopic Simulation . 4
2.2. Braking Distance Based Driving Speed Calculation 4
2.3. Preventing Oscillation with Randomness 5
2.4. Street Network Adaptation . 6

3. Implementation 7
3.1. Technical Challenges . 7
3.2. Data Source . 8
3.3. Software Architecture . 9
3.4. Visualization . 10

4. Parallelization 10
4.1. Task and Data Decomposition . 12
4.2. Streets4MPI Solution . 13

5. Speed and Efficiency 13
5.1. Measurements . 15
5.2. Lessons and Improvements . 17

6. Potential for Future Improvements 22
6.1. Improved Simulation Model . 22
6.2. Dynamic Shortest Path . 22
6.3. Improved Parallelization . 23

7. Summary 23

Appendix 24
Run Time Data . 24
Test Machine Hardware Info . 28

References 29

This work is licensed to the public under the terms of the Creative Commons Attribution Share-Alike 3.0 license. This means that it
may be freely copied, distributed and reused, limited only by a few restrictions, as long as the names of the original authors (Julian
Fietkau and Joachim Nitschke) are acknowledged and derivative works are published under the same license. More information:
http://creativecommons.org/licenses/by-sa/3.0/

The same holds true for all pictures included in this document.

2

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/
http://creativecommons.org/licenses/by-sa/3.0/

Abstract

Streets4MPI is a street traffic simulation software that uses MPI and is written in
Python. This report details how it was created, how it works, what it can do as well
as what it might be able to do in the future, with a focus on run time evaluations
and improvements.

1. Introduction
In April 2011, the authors of this document enrolled in the Parallel Programming project
course. The main task in that course was to design a program to solve a non-trivial
parallel processing problem. That was when the idea for Streets4MPI first came to
light.
The basic idea of Streets4MPI is to pick a fixed amount of (start, destination) pairs

in a street network. For each of these pairs, the shortest path is calculated, taking
local speed limits into account. All calculated shortest paths are then traversed and the
traffic load is recorded for each street, the cumulated results constituting a simulated
day. From day two onwards, drivers are influenced to a semi-random extent by street
congestions from the previous day. After a configurable number of days has passed, the
street network is adapted: seldomly used roads are dismantled, heavily used ones are
augmented to better cope with their usage.
Apart from the simulation core, Streets4MPI also contains a visualization component

that can output the simulation results as traffic load heatmaps.

1.1. Project Task
The overall goal of the project was to create a successfully parallelized software ap-
plication that uses parallel processing in a nontrivial manner. Streets4MPI fits this
description, since the traffic load calculation involves a lot of synchronization between
the processes, which makes parts of the algorithm very hard to parallelize, as we will see
in later chapters.
By extension, Streets4MPI also acts as an evaluation of whether a computationally

intensive parallel application like this is feasible to be written in Python. It would be
interesting to see if a good parallelization efficiency is achievable.

2. Traffic Simulation
In this chapter we describe the mechanisms that our traffic simulation is built on. To be
useful in a real-world city planning scenario a traffic simulation software would have to
model a multitude of different influences on traffic behavior like day time, traffic lights,
construction sites or right of way. Due to limited time, we focus on a more macroscopic
perspective with a few selected core rules.

3

2.1. Discrete Macroscopic Simulation
We assume that a street network is given as a directed graph, where the edges and nodes
represent the streets and crossings. To populate the network each node is assigned a
static number of residents. Inspired by the work on interactive geometric city simulation
by Weber et al. [2009] we further abstract from individual cars to a more general traffic
model based on trips. A trip represents the main travel done by a resident over a certain
time period, e.g. his way to work every day. Trips start at a designated street and end
at another. Start and destination are connected via the shortest path that is in our case
based on driving time. The driving time depends on speed limits and slowdown due to
traffic load.
We could think of two types of drivers: The first one chooses his route dynamically

in real-time. He just starts driving and takes another route if he sees a traffic jam. The
second one plans his route statically in discrete steps. If he gets stuck in a traffic jam
he sits it out but takes another route the next day. Real drivers are probably a mix of
both types. However a parallel version of the first approach is way more complicated to
implement since it requires sophisticated synchronisation methods.
Therefore our simulation runs in discrete steps. During each simulation step we cal-

culate the traffic load and – based on that – adapt the traffic in the next step. To
determine the traffic load we first calculate the trips’ shortest paths and then set each
street’s traffic load value to the number of paths using this street. At the beginning
of the next simulation step these results are used to update every street’s driving time
respectively the edge weights in the street network graph. The exact calculation of the
driving time is described in the next section.
Our simplified approach has some implied limitations: Due to the trip based model our

drivers only drive to one single destination every day. At first this seems to be relatively
unrealistic. However if one sees all the trips starting at one node as an approximation
for the total traffic caused by the residents living there, multiple destinations are in fact
included. Another limitation comes with the discrete route planing. We assume that
every driver knows the complete traffic state from the previous simulation step. Based
on that he makes a decision which is independant from all the other drivers. In fact
there is one resulting problem which we handle later in section 2.3. At first we will take
a closer look at the driving speed calculation.

2.2. Braking Distance Based Driving Speed Calculation
Increasing the driving time with respect to the traffic load is one of the core mechanisms
in our simulation. We use a function that is based upon an assumption: Our virtual
drivers always keep safe braking distances. Given a typical braking deceleration abrake

we can calculate a maximum driving speed v that still ensures a full stop within a given
braking distance lbrake:

v =
√

abrake · 2lbrake

Then – given a typical car length lcar – the available braking distance depends on the

4

length of a street lstreet and the number of cars driving over it at that time:

lbrake = lstreet

ncars
− lcar

To ensure the result is always greater than zero, we include a minimum braking distance.
We set this value close to zero to decrease the driving speed as much as possible since
the street is completely blocked in the case of a negative available braking distance.
At this point we already have a relatively coherent model. But as we pointed out

before, our trip based concept abstracts from individual cars. So we still need a mapping
from the trips using a street per simulation step to a number of cars on the street at
a certain point in time. We already described that a trip represents a resident’s traffic
over a certain time period, e.g. a day or 8 hours for day time only. So what is left is to
distribute all the trips using a street over a given time period ∆t:

ncars = ntrips · ttrip

∆t
= ntrips · lstreet

v · ∆t

We further add a trip volume ncars/trip to model that our residents do more than one
ride during a day:

ncars =
ntrips · ncars/trip · lstreet

v · ∆t

Note that now one can switch between a better performance or a more detailed sim-
ulation: By decreasing the number of trips and increasing every trip’s volume, the
simulation gets faster but less detailed since less destinations are chosen. On the other
hand by increasing the number of trips and decreasing the trip volume, the simulation
produces more detailed results with the cost of more computation complexity.
Combining the given formulae together we can now calculate the driving speed. Our

virtual drivers always respect speed limits, therefore the actual driving speed vactual is
the minimum of the calculated driving speed v and a street specific speed limit vmax.

2.3. Preventing Oscillation with Randomness
In reality one can observe that during rush hour some streets are always blocked. Some
people seem to be uninformed or naive enough to still take these routes although they
are blocked every day. In our simulation on the other hand the drivers are wiser. If one
route is blocked on one day they will take another faster route on the next day. The
problem about this strategy is that every driver makes his decision independently and
on the same basis. This leads to an oscillating behaviour: One day everybody takes
route A, on the next day everybody switches to route B since it is now supposedly faster
than route A. Figure 1 shows an example.
A more realistic scenario would be route A always beeing blocked while a part of the

traffic spills over to route B. To achieve this we focused on the psychological aspect of
the problem: Some drivers seem to be more tolerant when it comes to the weighing of
traffic jams. To model this we introduced a random traffic jam tolerance tjam for each

5

Figure 1: This sequence of images (read from left to right, top to bottom) shows how the
independant route planning causes oscillating driving behavior: On the first
day, the central road is completely jammed. The next day, all drivers avoid it,
only to return to it one day later, and so on.

resident. This value varies between 0 and 1 and weighs the impact of the traffic load on
the driving speed. We receive a perceived driving speed vperceived:

vperceived = vactual + (vmax − vactual) · tjam

If the traffic jam tolerance is high the driver plans his route based mainly on the ideal
driving speed respectively the speed limit. On the other hand if the traffic jam tolerance
is low the traffic load’s impact is taken into greater account.
Although this is a quite simple solution for the oscillation problem the results are in

fact satisfying. Figure 2 shows an example where a main route is always blocked while
the changes in traffic happen mostly on peripheral streets.

2.4. Street Network Adaptation
In Weber et al. [2009] the traffic simulation is used to simulate a city’s development
over longer time periods like months or years. New streets are built, resident’s move to
different places, buildings are constructed and torn down again. Due to our simplified
model and limited time we weren’t able to implement such a complex simulation but
decided to focus on one of the few static attributes that influence our traffic: the streets’
speed limits.
We further assume that speed limits are mainly changed to in- or decrease a street’s

capacity. If a street is used very frequently it is widened and its speed limit is increased.
On the other hand if a street is rarely used it is shrinked and its speed limit is decreased.

6

Figure 2: This sequence of images (read from left to right, top to bottom) shows how the
artificial randomness in the traffic jam resistance factor causes some drivers to
stick to a road even if it was jammed the day before, creating a bigger chance
for the model to stabilize.

To achieve this we sum up the traffic load that is calculated during n simulation steps.
Then – every nth simulation step – we change the speed limit of the most and least used
streets as described before.
By focussing on traffic capacity we exclude other factors that play a role in urban

planning like noise disturbance or accident risks. This is a rough simplification but an
easy way to make our street network react to the traffic over longer time periods.

3. Implementation
The Streets4MPI software provides several overarching capabilities on top of a sizable
preexisting software stack. In this chapter, we will discuss the implementation in detail.
To that end, we will summarize the technical challenges we were facing when we started
out, explain where and how we obtained viable street data and showcase the internal
architecture of Streets4MPI. We will also present the visualization component of our
application, in particular the results that it can generate.

3.1. Technical Challenges
As mentioned above, we decided early on that we wanted to use Python (rather than C)
as our main implementation language for Streets4MPI. This decision was made in light
of our previous programming experience and the ability of Python to quickly produce
feature-rich programs.

7

The obvious downside to using an interpreted, dynamically typed scripting language
are the inevitable speed obstacles. Python in particular is known for additional barriers
hindering successful parallelization [Python Project 2012].
However it bears mentioning that Python offers a very compelling list of available

modules and packages that can be easily accessed and used. In the end, we used the
following packages to ease our workload:

• imposm.parser1 to parse geographic street data from the OpenStreetMap2 project.

• python-graph3 to be able to easily construct and traverse large graphs. We used
this module’s capabilities for the shortest path calculations.

• Python Imaging Library4 to create color graphics from our simulated data and
save them to disk.

• mpi4py5 to interface with MPI for the parallel processing.

We started the implementation under the assumption that the finished Python software
would be significantly slower than a hypothetical equivalent software written in C. Part
of our project work was to gauge the software’s efficiency and look for bottlenecks. We
expand on this in chapters 5 and 6.

3.2. Data Source
The successful execution of Streets4MPI ’s premise obviously relies on the existence of
viable street network data. As mentioned in section 2 the data would have to contain
geographical information about all streets in any given area as well as their connect-
edness. In addition we need information about existing speed limits. Additional data
about street type or size or other auxiliary data would be beneficial. Furthermore such
data would preferably be freely available so that the results of the program’s execution
may also be freely shared.
Fortunately for Streets4MPI , such a data source is provided by the OpenStreetMap

project. It contains all relevant data (and much more), is sufficiently accurate for our
purposes and is available under a Creative Commons license [OpenStreetMap Wiki
2012]. There are also some drawbacks: The project makes only few promises concerning
data integrity and the data format is poorly specified in some places. Still, it is a much
better alternative to other external data sources and to the idea of generating street
network data completely on our own.

Streets4MPI does not use a so-called OpenStreetMap API server, but instead relies on
local copies of the data that imposm.parser can read. We supply a small dataset for

1http://dev.omniscale.net/imposm.parser/
2http://openstreetmap.org/
3http://code.google.com/p/python-graph/
4http://www.pythonware.com/products/pil/
5http://code.google.com/p/mpi4py/

8

http://dev.omniscale.net/imposm.parser/
http://openstreetmap.org/
http://code.google.com/p/python-graph/
http://www.pythonware.com/products/pil/
http://code.google.com/p/mpi4py/

Streets4MPI

Streets4MPI Visualization
can be started via CLI can be started via CLI

Pe
rsi

ste
nc

e PIL

im
po

sm
.p

ar
se

r

Gr
ap

hB
ui

ld
er

cPicklempi4py

StreetNetwork
data container class

Simulation

python-graph
usage

data flow
(in the object-oriented sense)

TripGenerator

Figure 3: Overview of the software architecture of Streets4MPI. This diagram does not
show every single class relation, but divides Streets4MPI into meaningful com-
ponents and displays their interaction with external modules.

testing (approximately encompassing the Stellingen district of Hamburg). Recent data
dumps sorted by country or state are available e.g. at Geofabrik6.
For the sake of brevity, we will not discuss the OSM data format in this document.

Suffice to say that it is XML based and describes a graph structure.

3.3. Software Architecture
Since we use external packages to do most of the “heavy lifting”, the main task of our
code is to pass data between the different parts and encapsulate interfaces accordingly.
The overall architecture is visually summarized in figure 3.
The main application is represented by the class Streets4MPI and can be roughly

seperated in three phases:
In the first phase the program creates an instance of the GraphBuilder class that

reads the OSM data into memory and fills it into a StreetNetwork instance which rep-
resents our main data structure containing all the information about the street network.
Internally it is built around the Graph data structure from the python-graph library.

6http://download.geofabrik.de/osm/

9

http://download.geofabrik.de/osm/

During the second phase a TripGenerator instance generates the trips. It randomly
selects nodes from the street network as start nodes and assigns one or more destination
nodes to them. We also experimented with selecting nodes based on their land use type
to create trips that lead from residential areas to industrial or commercial areas. But
since the OSM data provides only a few nodes with such a land use type assigned we had
to discard that approach and decided to implement a completely random trip generation.
The third phase contains the execution of the Simulation and is the most important

one. As described in section 2 our simulation runs in steps. During each step we first
update all the driving times respectively the edge weights in the street network graph
based on the traffic load calculated in the previous simulation step. Then the simulation
calculates the shortest paths for all the trips and sums up the traffic load data. Within
the shortest path calculation lies the most computation complexity. Here we use an
implementation of Dijkstra’s algorithm from the python-graph library.
We decided to completely decouple the visualization from running the simulation.

Therefore the street network data and the traffic load data are serialized to disk as
files with an s4mpi extension (internally, street network data is saved as pickle7 output
and traffic load as a numerical array, both gzipped before being written to disk). Then
– after the simulation is finished – the Visualization class is started as a seperate
application that reads the previously generated s4mpi files from disk and renders them
as PNG images. It may even be run on another machine, provided that all the files are
transferred.

3.4. Visualization
The visualization component of Streets4MPI supports several different metrics, the most
important one being the overall traffic load – an approximate metric for how many cars
are on a certain street at any given point in time. Other than that, it can also visualize
the speed limits, some related metrics like an approximation for the ideal speed based
on total number of cars passing, and the connected components of the street graph.
Furthermore, it supports two color modes: a heatmap mode where the value scale is

mapped to colors in the way that is commonly used in heatmaps (bright red for highest
values, dark blue for lowest) and a grayscale mode that is better suited for printing in
black and white. An example output for each of these two color modes using Hamburg
(Germany) for the street network is available in figure 4.
The visualization shares some components with the main Streets4MPI software, but

is launched independently. It is not parallelized.

4. Parallelization
Since the parallel execution was one of our main project tasks we decided to dedicate a
seperate chapter to this aspect of Streets4MPI . According to the methodology described
in [Mattson et al. 2004] we will first have a look at the main computation tasks that our

7Python’s versatile object serialization engine – http://docs.python.org/library/pickle.html

10

http://docs.python.org/library/pickle.html

Figure 4: (a) Simulated traffic load for the street network of Hamburg, Germany, in
heatmap color mode. (b) The same traffic data, visualized in grayscale color
mode.

11

program consists of, the main data they operate on and how both can be decomposed
for parallelization before we explain our final parallelization strategy in section 4.2.

4.1. Task and Data Decomposition
In section 2 and 3.3 we described the main application flow. In doing so we already
pointed out the tasks that our application consists of:

1. Create street network from OSM data

2. Generate trips

3. Simulation steps (repeat until simulation is finished)
a) Update edges in street network graph
b) Calculate the shortest path

Since we decided to use external libraries for parsing the OSM data and calculating
the shortest paths we had to handle task 1 and 3.2 as atomic. Otherwise we could have
splitted them further into smaller subtasks.
By listing the tasks we already did some grouping and ordering. In fact task 2 and

3 represent groups containing multiple tasks: We have to generate n trips and for each
of these n trips we need to execute the tasks inside a simulation step namely task 3.1
and 3.2. All the tasks inside a group are independant from each other, so they can be
handled as one task in the order that is given through the enumeration: At first we have
to create the street network, only afterwards can we select start and destination nodes
during the trip generation in task 2. And only after the trips have been created we can
start the first simulation step containing task 3.1 and 3.2. Then every simulation step
depends on the results from the previous step.
The reason why we listed task 3.1 and 3.2 as internal tasks of a simulation step is the

traffic jam tolerance that we introduced in section 2.3. Since every resident has its own
traffic jam tolerance we theoretically have to handle both tasks as one task: Every time
we calculate a trip’s shortest path we need to update all the edge weights in advance.
On the other hand since large cities contain a lot of streets this is very cost-intense. We
will handle this problem later in the next section.
First we will take a look at the data that the tasks operate on. Beside some small

data that is exchanged between our application’s components the main data structure
is the street network graph. It is used by all of the tasks: Task 1 creates it, task 2
reads it, task 3.1 updates it and task 3.2 again reads it. If such a central data structure
is involved a data driven decomposition would make sense. However our random trip
generation presents a major problem: As trips can lead all across the city it is impossible
to find a decomposition into parts that the tasks in group 3 can operate on more or less
independently.

12

4.2. Streets4MPI Solution
Coming from the decomposition analysis that we described in the previous section we
will now present our final parallelization strategy. The result of this analysis was that all
the trip based tasks – thus their generation and the operations during each simulation
step – can be executed independant from each other. Therefore we decided to organize
our parallelization around the trips.
Since we use Dijkstra’s algorithm that calculates the shortest path from one node

to all other nodes the computation complexity related to each trip remains relatively
constant. Hence we decided on a static scheduling: At the beginning we divide the
number of residents respectively the number of trips by the number of processes. Then
each process generates its part of the trips and runs the simulation with these trips.
In the previous section we already abandoned a decomposition of the street network

graph. As we need the whole graph for calculating the shortest paths we let each process
create its own copy of the street network graph. Since they are all based upon the same
OSM data and a deterministic parsing process the different copies are indentical. Now
there is one remaining dependency: At the beginning of each simulation step we update
all the edge weights in the graph based on the complete traffic load data from the previous
step. Here we need to do some synchronization: Every process saves its results seperate
from the graph inside an array. After each simulation step we merge these arrays into
one array and distribute it over the processes. Figure 5 shows the whole parallelization
strategy.
In the previous section we pointed out that the traffic jam tolerance which is assigned

to each trip presents a problem: According to this we would have to update all the edge
weights in the street network graph before each shortest path calculation. To avoid this
we made a simplification that exploits the fact that each process has its own copy of the
entire street network graph. Instead of giving an individual tolerance value to each trip
we gave one to each process respectively all the trips that are managed by it. In doing
so we accepted the fact that our simulation’s level of detail depends on the number of
processes. On the other hand we saved a lot of computation because now we need to
update the edge weights only once on each process.
Technically the application is written according to the single program multiple data

principle which MPI is based on. Thus the same program runs on each process, the
differences in execution only depend on the process ID. The whole MPI related code is
encapsulated in the main class Streets4MPI. To merge the traffic load data after each
simulation step we use the MPI operation allreduce. A more detailed description of the
merging process is given later in section 5.2.

5. Speed and Efficiency
As mentioned in section 3.1, we expected our software to be relatively slow in com-
parison to a hypothetical version written in a lower-level programming language than
Python. Still, we had high hopes towards the efficiency (scalability when adding more
MPI processes). In this chapter, we explain what we found out.

13

... MPI

OSM

results

results

results

python #0 python #1 python #n

tim
e

iteration 1

iteration 2

iteration 3

iteration 4

iteration 1

iteration 2

iteration 3

iteration 4

iteration 1

iteration 2

iteration 3

iteration 4

exchange traffic data

exchange traffic data

exchange traffic data

Figure 5: Diagram visualizing the parallelization strategy of Streets4MPI. The desired
number of Python processes is launched through MPI, each process reads the
OSM data, synchronization of the traffic load occurs after each iteration, and
process #0 writes the results to disk.

14

 0

 500

 1000

 1500

 2000

 2500

 3000

1 4 8 12 16
 0

 25

 50

 75

 100

to
ta

l t
im

e
[s

]

effi
ci

en
cy

 [%
]

of processes

Run times of Streets4MPI (Stellingen dataset, 1000 residents, 50 simulation steps)

total time
efficiency

Figure 6: Speed test diagram for our first test, conducted April 3rd, 2012. Regrettably,
the efficiency of the parallelization decreases rather quickly as we add more
MPI processes.

We did most tests using a relatively small dataset, so that they would finish within
several minutes to an hour. We also did some viability testing with bigger than default
datasets (hundreds of thousands of streets/trips). There are no hard limits for the size
of the street network or the number of trips, but it should be noted that the RAM usage
can increasy sharply as more MPI processes are added.

5.1. Measurements
We did performance measurements on a testing machine that belongs to the DKRZ8.
It is a machine powered by 12 processors with 4 cores each, running a total of 48 cores
at 1.9 GHz. Detailed information about the system is collected in the appendix on
page 28. Normally we always used the most recent version of Streets4MPI for all tests,
making sure that all conditions remained consistent for tests that would be compared
for efficiency.
To start off, we tested the efficiency by running a simulation with 1000 residents

through 50 simulation steps in the Stellingen street network. The results can be seen in
figure 6. This test reveals that, while our parallelization is not terrible for a first effort, it
also seems to offer plenty of room for improvement. The total run time seems to consist
of a large portion that is parallelized really well, as well as a constant part that results
in little to no improvement as the number of MPI nodes increases into the double digits.
The efficiency also decreases sharply.
These results are generally in line with what could be expected from our software.

8Deutsches Klimarechenzentrum – http://dkrz.de/

15

http://dkrz.de/

 0

 200

 400

 600

 800

 1000

 1200

1 4 8 12 16
 0

 25

 50

 75

 100

to
ta

l t
im

e
[s

]

effi
ci

en
cy

 [%
]

of processes

Run times of Streets4MPI (Stellingen dataset, 100 residents, 200 simulation steps)

total time
efficiency

Figure 7: Speed test diagram for our second test, also conducted April 3rd, 2012. With
fewer residents and more steps compared to the first test, Streets4MPI spends
less time calculating paths and more time coordinating processes, resulting in
a loss of efficiency.

The simulation can be cleanly divided into two parts:

1. The calculation of the shortest paths and the traffic load for the individual roads:
This is what would be called the “main” part of our simulation and scales extremely
well, because for every simulation step, every MPI process gets a certain number
of trips and does all related calculations autonomously.

2. The summation of the process local traffic loads, saving the results to disk and
starting the next simulation step: This part of the simulation would be very tricky
to parallelize, if not outright impossible. As a result, it does not scale at all and
takes an approximately constant time no matter the number of processes.

To confirm whether the above ideas are correct, we executed a second test run with
different parameters: The number of residents was reduced from 1000 to 100 and the
number of simulation steps was increased from 50 to 200, thereby forcing the software
to spend less time calculating paths and more time coordinating the processes. We
expected to see a proportionally bigger constant part to the total run time, resulting in
a further drop in efficiency. The results of this test run can be seen in 7. They confirm
our expectations.
The conclusion from our tests is that we should do our best to reduce the time spent

on organizational tasks. We did a few experiments – some only in thought, some in code
– which we will detail in the next section.

16

5.2. Lessons and Improvements
As mentioned above, a good way to improve the efficiency of our Streets4MPI software
would be to reduce the time spent on non-parallelized tasks, such as disk I/O and
communication.
Every step we need to save the traffic load data to disk, as well as the street network

in case it has changed. Originally, we simply used Python’s pickle module to serialize
our data structure and save that to a file. The format used by pickle is not very space
efficient, since it is a universal serializer that can handle any Python object.
Optimally, we would write our own serialization method for our data structures to

save space and time. However doing so proved impractical for the following reasons:

1. Both the street network and the traffic load data use OpenStreetMap element IDs
as the index variable. This element ID is numeric, but otherwise apparently poorly
specified. Not much is known about it other than it being globally unique (except
in some rare edge cases) and non-negative (except in some other rare edge cases),
and that at least one implementation posits that many element IDs are 32 bits wide
while others need 64 bits. Python transitions fluently between different numeric
types even into BigNumber implementations, but if we were serializing it, we would
have to decide how to encode it so that its length and value are self-evident and
it can be indexed in a byte stream, which would be possible but complicated.

2. In addition, the street network uses an underlying data structure that is imported
from the python-graph module, that is already quite sophisticated. Even if we
found a good way to serialize the graph including all its nodes, edges, attributes
and properties, we would have to rebuild the data structure essentially from scratch
whenever we would deserialize a file.

We did not want to give up easily, but decided that these problems were not likely to be
solved within our timeframe. We did however – so to speak – tackle the problem from
the other side.
The first thing we did was to change the serialization pipeline so that the pickle

output would be compressed (we decided on gzip) before it is written to a file. This
reduces the file size (and thus, it is sensible to assume, also the I/O time) by about 70%,
at the cost of slightly increased processor usage. We tested the speed-up using the same
parameters as in the first test we did (cf. section 5.1). The results can be seen in figure
8. This change leads to an overall speedup of approximately 1%, almost constant even
as the number of processes changes. We were expecting more of a positive change in
efficiency, but are also glad that the speed has increased overall.
Next, we switched out pickle in favor of cPickle, a pickle reimplementation writ-

ten in C rather than Python, promising a speed boost for the serialization and deseri-
alization process. Indeed, this speedup has produced another overall speedup of about
1%. The relevant data is visualized in figure 9.
Under the assumption that the serialization/deserialization process and the disk I/O

can not easily be optimized further, we decided to apply the above principles to the
inter-process communication via MPI.

17

 0

 500

 1000

 1500

 2000

 2500

 3000

1 4 8 12 16
 0

 25

 50

 75

 100

to
ta

l t
im

e
[s

]

effi
ci

en
cy

 [%
]

of processes

Run times of Streets4MPI (Stellingen, 1000 res., 50 steps), compressed I/O

total time
efficiency

Figure 8: Speed test diagram for our third test, conducted April 18th, 2012. This is
the first test using compressed serialization. It uses the same parameters as
the first test (cf. figure 6) and as such should be compared to that specific
test. The difference is not immediately visible to the naked eye, but there’s an
overall reduction of total run times of about 1%.

 0

 500

 1000

 1500

 2000

 2500

 3000

1 4 8 12 16
 0

 25

 50

 75

 100

to
ta

l t
im

e
[s

]

effi
ci

en
cy

 [%
]

of processes

Run times of Streets4MPI (unchanged parameters), compressed I/O, cPickle

total time
efficiency

Figure 9: Speed test diagram for our fourth test, conducted April 18th, 2012. This is the
first test using cPickle rather than pickle, yielding no change in program
semantics, but another overall speedup of 1%.

18

 0

 500

 1000

 1500

 2000

 2500

 3000

1 4 8 12 16
 0

 25

 50

 75

 100

to
ta

l t
im

e
[s

]

effi
ci

en
cy

 [%
]

of processes

Run times of Streets4MPI (unchanged parameters), compressed MPI messages

total time
efficiency

Figure 10: Speed test diagram for our fifth test, conducted April 18th, 2012. In this
test, we handled the serialization of traffic data on our own. This proved to
be fruitless, as the overhead of the conversion further destroyed the efficiency
and actually lead to increased total runtime as the number of processes was
increased.

Streets4MPI uses mpi4py, which is a Python layer on top of standard mpich2. Its
documentation reveals [MPI for Python v1.3 documentation 2012] that mpi4py typically
transmits objects serialized in pickle format as well, unless they are of a type that offers
a special interface for buffer-based communication, e.g. a string or a numerical array.
To offer this interface, a class must be implemented in C rather than Python. Python’s
native strings and arrays fulfill this requirement.
The only thing we send via MPI is the traffic load data, which we stored as a native

Python dict. With the idea of implementing our own data type in C dismissed due
to the complexity of the task, the only remaining option was conversion into a string
or an array. Due to the aforementioned issues surrounding the OpenStreetMap element
IDs, we were hesitant about creating our own array structure, since we wouldn’t be able
to assure it to be future-proof. We did however attempt to serialize the traffic data
ourselves and transmit them as strings via MPI, in hopes of achieving a better run time
efficiency. The results of this attempt can be seen in figure 10. It turned out to be quite
inefficient and introduced a lot more overhead into the communication.
This version of the code has been committed to our public version control system and

can be restored from the archive, but we were quick to replace it with what we had
before and strongly advise not to use it.
Taking a step back, we considered that another possible venue for improvement would

be the communication strategy. Up to that point, we used mpi4py’s implementation of
mpi_allgather to exchange traffic load data between processes in such a way that every

19

process has access to the data of every other process. However this traffic load data was
then merely summed up. To clarify: Every process had a dictionary with graph edges
as the index variable, holding the amount of times any specific edge was used by a trip.
If this number was 0, the edge was not included in the dictionary. After gathering all
dictionaries from all other nodes, every process then added up all the usage values for
every street until it had a complete street usage dictionary for the current simulation
step, which was then identical for every process.
This communication scheme intuitively looked like it should be able to be simplified.

Under optimal conditions, one would use something like mpi_allreduce in situations
where things have to be summed up, to save processing time. Unfortunately, mpi4py’s
mpi_allreduce can only handle arrays for summation, which are then summed up for
every index.
The mpi4py package offers two different implementations for the allreduce opera-

tion: A buffer-based one (Allreduce with a capital A) and a generalized one for other
Python objects (allreduce in small letters). The mpi4py documentation suggests that
the generalized variant of the reduction operation might not bring the optimization that
one would hope for: “the actual required reduction computations are performed sequen-
tially at some process” [MPI for Python v1.3 documentation 2012]. To support the
buffer-based variant, we would have to save the traffic load data as arrays, which would
require further modifications to our data structure.
Since we could not rely on the OSM element ID as a consistent identifier, we quickly

decided that it would not be viable to use it as an array index. But for MPI reduce
operations, the traffic load would have to be saved as an array, with only traffic load data
values as elements, and the corresponding streets coded as the array index. Thus, we
introduced our own street ID which is assigned at street network loading time. Whenever
a street network is newly created from OSM data, every street gets a numerical ID
starting from 0. Streets can be accessed by this ID. It is a perfect array index for the
traffic load data.
We reimplemented the traffic load as numerical arrays instead of dictionaries. It took

some small changes scattered across the software, but overall it was not too hard once
we had the concept cleared. This new version of the software (at that point still using
MPI’s allgather) was then tested using the same parameters as before. The results
of this test can be seen in figure 11 – and they surpassed our hopes by far. We were
able to reduce the overall runtime for the non-parallelized case by about 30%, which is
remarkable even by itself. More incredible still was the improvement of the efficiency as
the number of processors increased: From a rather disappointing 31% efficiency for the
16-processes-case to a rather more pleasant 78%.
Although our dataset for these tests was too small for it to make any kind of huge

impact, we were still committed to transmit the traffic load data via MPI’s Allreduce
operation (using the buffer-based interface), as we had originally planned. With the
groundwork done, this was relatively reasy to do. The results of the final speed test can
be seen in figure 12. Compared to the previous test, there are no obvious changes. We
assume that the benefits of this method are simply not visible using our testing dataset.
Overall, we are very content with the improvements we were able to make.

20

 0

 500

 1000

 1500

 2000

 2500

 3000

1 4 8 12 16
 0

 25

 50

 75

 100

to
ta

l t
im

e
[s

]

effi
ci

en
cy

 [%
]

of processes

Run times of Streets4MPI (unchanged parameters), traffic load as arrays

total time
efficiency

Figure 11: Speed test diagram for our sixth test, conducted May 2nd, 2012. In this test,
we introduced a new method for saving and transmitting traffic load data,
which proved to be extremely beneficial. We note a significant boost in overall
speed and, more importantly, an extraordinary improvement in efficiency.

 0

 500

 1000

 1500

 2000

 2500

 3000

1 4 8 12 16
 0

 25

 50

 75

 100

to
ta

l t
im

e
[s

]

effi
ci

en
cy

 [%
]

of processes

Run times of Streets4MPI (unchanged parameters), traffic load as arrays, MPI allreduce

total time
efficiency

Figure 12: Speed test diagram for our seventh and final test, conducted May 2nd, 2012.
In this test, we switched to the allreduce method for the traffic load. Im-
provements over the previous test are incremental at most. It is likely that
the benefits of the allreduce usage would be more visible using a bigger
dataset and more residents than we used here.

21

6. Potential for Future Improvements
In this chapter we propose a few approaches for improving Streets4MPI that might be
pursued in the future maybe by interested individuals or in the form of further university
projects like ours. The first approaches refer to the underlying simulation concept, the
next ones improve the technical realisation, mainly its performance.

6.1. Improved Simulation Model
In chapter 2 we already named some of the limitations that our simplified model impli-
cates.
One of them was the completely random trip generation. In most cities one can

observe that the greater part of the residents lives in the outer areas and drives to work
somewhere near the city center. This can be modeled by adding an attractiveness to
each node that in- or decreases the possibility to be selected as a start or destination
node. This attractiveness could then depend on the distance to the city center. In
3.3 we described that a few nodes in the OSM data have an assigned land use type
which marks them as a “residential” or “industrial” node. This attribute could also be
considered when rating the attractiveness.
Further improvements could be done when adapting the street network as described

in section 2.4. We could think of blocking streets for some simulation steps while the
construction is in progress or residents moving away from widened streets respectivly
lowering these streets’ attractivness.

6.2. Dynamic Shortest Path
The most computation complexity lies within the calculation of the shortest paths.
Since we update all our edge weights at the beginning of each simulation step we need
to recalculate the shortest paths again and again. But although the traffic changes in
general during a simulation step it might stay the same for some of the streets. Under
some circumstances it wouldn’t be necessary to recalculate all shortest paths.
This is the idea of dynamic shortest path algorithms. Given a graph they initially

compute all shortest paths. Then if the graph is changed locally they update only those
shortest paths that are influenced by the changes. By keeping an initial set of shortest
path up-to-date computation time is saved: For example if the weight of an edge is
decreased all the shortest paths containing that edge don’t need to be recalculated
because they become even shorter. On the other hand if an edge weight is increased
only those shortest paths containing the edge need to be recalculated because other
paths won’t become shorter by using the changed edge.
There are several different algorithms available that use different mechanisms to de-

termine which paths need to be updated. Some of them are presented in [Demetrescu
and Italiano 2006].

22

6.3. Improved Parallelization
While Streets4MPI has made quite some strides to improve its efficiency, it is certainly
not perfect – there must still be ways to improve the communication and reduce the
overhead.
An emergent candidate for improvement would be I/O handling: At the moment, the

street network must be read from disk by every single process, which seems wasteful until
one realizes that reading it at some process and then broadcasting it, leaving all others
waiting pointlessly, would be even worse. Maybe there are parallelization opportunities
there.
Similiarly, all persisted data (street network revisions and traffic loads) are written to

disk by the process with the MPI rank of 0, which causes it to block and lag behind the
others when calculating the paths for the iteration.
Additionally, maybe the PyMPI project9 can offer technical advantages that mpi4py

doesn’t.

7. Summary
With the project task and scope in mind we are satisfied with Streets4MPI , its capabil-
ities and the progress it has made. We were able to deliver a software that can simulate
street traffic in any street network and adapt the streets to the traffic demands. Fur-
thermore we invested a lot of effort into ensuring that it remains scalable and efficient
across parallel processors.

Streets4MPI is free software. Information on how to download and run it are available
at the project’s website10.

9http://pympi.sourceforge.net/
10http://jfietkau.github.com/Streets4MPI/

23

http://pympi.sourceforge.net/
http://jfietkau.github.com/Streets4MPI/

Appendix

Run Time Data
This is the run time data collected during our speed up tests, running Streets4MPI on
our testing machine (see next section for detailed hardware information). Example call:
time mpiexec -n 16 python streets4mpi.py� �
1 === 2012-04-04: pickle-based serialization ===

test.osm, 1000 res, 50 steps, 1 node:
real 44m23.046s

5 user 44m17.822s
sys 0m3.680s

test.osm, 1000 res, 50 steps, 4 nodes:
real 14m6.164s

10 user 54m35.741s
sys 1m40.930s

test.osm, 1000 res, 50 steps, 8 nodes:
real 9m46.343s

15 user 75m37.056s
sys 2m20.957s

test.osm, 1000 res, 50 steps, 12 nodes:
real 9m11.719s

20 user 105m35.460s
sys 4m30.217s

test.osm, 1000 res, 50 steps, 16 nodes:
real 9m0.204s

25 user 136m50.473s
sys 6m48.298s

30 test.osm, 100 res, 200 steps, 1 node:
real 18m39.199s
user 18m28.369s
sys 0m0.356s

35 test.osm, 100 res, 200 steps, 4 nodes:
real 8m32.741s
user 31m30.498s
sys 2m26.165s

40 test.osm, 100 res, 200 steps, 8 nodes:
real 5m47.401s
user 41m54.001s
sys 4m7.887s

24

45 test.osm, 100 res, 200 steps, 12 nodes:
real 5m34.219s
user 59m47.856s
sys 6m37.881s

50 test.osm, 100 res, 200 steps, 16 nodes:
real 5m29.153s
user 78m23.314s
sys 8m51.493s

55

=== 2012-04-18: compressed serialization ===

test.osm, 1000 res, 50 steps, 1 node:
60 real 44m4.473s

user 44m0.073s
sys 0m0.392s

test.osm, 1000 res, 50 steps, 4 nodes:
65 real 13m51.084s

user 53m44.994s
sys 1m29.678s

test.osm, 1000 res, 50 steps, 8 nodes:
70 real 9m41.537s

user 74m32.992s
sys 2m44.930s

test.osm, 1000 res, 50 steps, 12 nodes:
75 real 9m5.765s

user 104m15.907s
sys 4m33.449s

test.osm, 1000 res, 50 steps, 16 nodes:
80 real 8m56.532s

user 136m41.953s
sys 5m54.334s

85

=== 2012-04-18: compressed serialization, cPickle ===

test.osm, 1000 res, 50 steps, 1 node:
real 43m59.562s

90 user 43m55.757s
sys 0m0.300s

test.osm, 1000 res, 50 steps, 4 nodes:
real 13m58.493s

95 user 54m17.048s
sys 1m29.246s

test.osm, 1000 res, 50 steps, 8 nodes:

25

real 9m35.552s
100 user 74m12.482s

sys 2m19.521s

test.osm, 1000 res, 50 steps, 12 nodes:
real 9m2.020s

105 user 103m59.690s
sys 4m5.683s

test.osm, 1000 res, 50 steps, 16 nodes:
real 8m49.439s

110 user 135m49.861s
sys 4m58.503s

115 === 2012-04-18: compressed serialization, MPI using serialized data ===

test.osm, 1000 res, 50 steps, 1 node:
real 44m21.334s
user 44m18.126s

120 sys 0m0.280s

test.osm, 1000 res, 50 steps, 4 nodes:
real 15m5.995s
user 58m30.255s

125 sys 1m50.927s

test.osm, 1000 res, 50 steps, 8 nodes:
real 12m0.814s
user 92m37.643s

130 sys 3m17.468s

test.osm, 1000 res, 50 steps, 12 nodes:
real 12m37.881s
user 144m7.204s

135 sys 6m49.054s

test.osm, 1000 res, 50 steps, 16 nodes:
real 13m47.411s
user 208m29.014s

140 sys 9m9.486s

=== 2012-05-02: traffic load as arrays ===
145

test.osm, 1000 res, 50 steps, 1 node:
real 30m58.271s
user 30m54.996s
sys 0m0.240s

150

test.osm, 1000 res, 50 steps, 4 nodes:
real 8m21.201s

26

user 32m35.330s
sys 0m42.775s

155

test.osm, 1000 res, 50 steps, 8 nodes:
real 4m25.548s
user 33m53.327s
sys 1m19.737s

160

test.osm, 1000 res, 50 steps, 12 nodes:
real 3m15.611s
user 36m20.500s
sys 2m27.817s

165

test.osm, 1000 res, 50 steps, 16 nodes:
real 2m27.817s
user 36m52.994s
sys 1m41.966s

170

=== 2012-05-02: traffic load as arrays, using MPI allreduce ===

175 test.osm, 1000 res, 50 steps, 1 node:
real 30m22.387s
user 30m19.450s
sys 0m0.276s

180 test.osm, 1000 res, 50 steps, 4 nodes:
real 8m20.850s
user 32m42.283s
sys 0m34.670s

185 test.osm, 1000 res, 50 steps, 8 nodes:
real 4m23.734s
user 33m49.991s
sys 1m7.928s

190 test.osm, 1000 res, 50 steps, 12 nodes:
real 3m5.335s
user 35m15.804s
sys 1m30.758s

195 test.osm, 1000 res, 50 steps, 16 nodes:
real 2m26.309s
user 36m30.049s
sys 2m4.456s� �

27

		=== 2012-04-04: pickle-based serialization ===

		

		test.osm, 1000 res, 50 steps, 1 node:

		real		44m23.046s

		user		44m17.822s

		sys		0m3.680s

		

		test.osm, 1000 res, 50 steps, 4 nodes:

		real		14m6.164s

		user		54m35.741s

		sys		1m40.930s

		

		test.osm, 1000 res, 50 steps, 8 nodes:

		real		9m46.343s

		user		75m37.056s

		sys		2m20.957s

		

		test.osm, 1000 res, 50 steps, 12 nodes:

		real		9m11.719s

		user		105m35.460s

		sys		4m30.217s

		

		test.osm, 1000 res, 50 steps, 16 nodes:

		real		9m0.204s

		user		136m50.473s

		sys		6m48.298s

		

		

		

		test.osm, 100 res, 200 steps, 1 node:

		real		18m39.199s

		user		18m28.369s

		sys		0m0.356s

		

		test.osm, 100 res, 200 steps, 4 nodes:

		real		8m32.741s

		user		31m30.498s

		sys		2m26.165s

		

		test.osm, 100 res, 200 steps, 8 nodes:

		real		5m47.401s

		user		41m54.001s

		sys		4m7.887s

		

		test.osm, 100 res, 200 steps, 12 nodes:

		real		5m34.219s

		user		59m47.856s

		sys		6m37.881s

		

		test.osm, 100 res, 200 steps, 16 nodes:

		real		5m29.153s

		user		78m23.314s

		sys		8m51.493s

		

		

		

		=== 2012-04-18: compressed serialization ===

		

		test.osm, 1000 res, 50 steps, 1 node:

		real		44m4.473s

		user		44m0.073s

		sys		0m0.392s

		

		test.osm, 1000 res, 50 steps, 4 nodes:

		real		13m51.084s

		user		53m44.994s

		sys		1m29.678s

		

		test.osm, 1000 res, 50 steps, 8 nodes:

		real		9m41.537s

		user		74m32.992s

		sys		2m44.930s

		

		test.osm, 1000 res, 50 steps, 12 nodes:

		real		9m5.765s

		user		104m15.907s

		sys		4m33.449s

		

		test.osm, 1000 res, 50 steps, 16 nodes:

		real		8m56.532s

		user		136m41.953s

		sys		5m54.334s

		

		

		

		=== 2012-04-18: compressed serialization, cPickle ===

		

		test.osm, 1000 res, 50 steps, 1 node:

		real		43m59.562s

		user		43m55.757s

		sys		0m0.300s

		

		test.osm, 1000 res, 50 steps, 4 nodes:

		real		13m58.493s

		user		54m17.048s

		sys		1m29.246s

		

		test.osm, 1000 res, 50 steps, 8 nodes:

		real		9m35.552s

		user		74m12.482s

		sys		2m19.521s

		

		test.osm, 1000 res, 50 steps, 12 nodes:

		real		9m2.020s

		user		103m59.690s

		sys		4m5.683s

		

		test.osm, 1000 res, 50 steps, 16 nodes:

		real		8m49.439s

		user		135m49.861s

		sys		4m58.503s

		

		

		

		=== 2012-04-18: compressed serialization, MPI using serialized data ===

		

		test.osm, 1000 res, 50 steps, 1 node:

		real		44m21.334s

		user		44m18.126s

		sys		0m0.280s

		

		test.osm, 1000 res, 50 steps, 4 nodes:

		real		15m5.995s

		user		58m30.255s

		sys		1m50.927s

		

		test.osm, 1000 res, 50 steps, 8 nodes:

		real		12m0.814s

		user		92m37.643s

		sys		3m17.468s

		

		test.osm, 1000 res, 50 steps, 12 nodes:

		real		12m37.881s

		user		144m7.204s

		sys		6m49.054s

		

		test.osm, 1000 res, 50 steps, 16 nodes:

		real		13m47.411s

		user		208m29.014s

		sys		9m9.486s

		

		

		

		=== 2012-05-02: traffic load as arrays ===

		

		test.osm, 1000 res, 50 steps, 1 node:

		real		30m58.271s

		user		30m54.996s

		sys		0m0.240s

		

		test.osm, 1000 res, 50 steps, 4 nodes:

		real		8m21.201s

		user		32m35.330s

		sys		0m42.775s

		

		test.osm, 1000 res, 50 steps, 8 nodes:

		real		4m25.548s

		user		33m53.327s

		sys		1m19.737s

		

		test.osm, 1000 res, 50 steps, 12 nodes:

		real		3m15.611s

		user		36m20.500s

		sys		2m27.817s

		

		test.osm, 1000 res, 50 steps, 16 nodes:

		real		2m27.817s

		user		36m52.994s

		sys		1m41.966s

		

		

		

		=== 2012-05-02: traffic load as arrays, using MPI allreduce ===

		

		test.osm, 1000 res, 50 steps, 1 node:

		real		30m22.387s

		user		30m19.450s

		sys		0m0.276s

		

		test.osm, 1000 res, 50 steps, 4 nodes:

		real		8m20.850s

		user		32m42.283s

		sys		0m34.670s

		

		test.osm, 1000 res, 50 steps, 8 nodes:

		real		4m23.734s

		user		33m49.991s

		sys		1m7.928s

		

		test.osm, 1000 res, 50 steps, 12 nodes:

		real		3m5.335s

		user		35m15.804s

		sys		1m30.758s

		

		test.osm, 1000 res, 50 steps, 16 nodes:

		real		2m26.309s

		user		36m30.049s

		sys		2m4.456s

		

runtimedata.txt

Test Machine Hardware/Software Info
This is the detailed hardware and software information for the machine on which we ran
our performance tests.� �
1 Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 48

5 On-line CPU(s) list: 0-47
Thread(s) per core: 1
Core(s) per socket: 12
CPU socket(s): 4
NUMA node(s): 8

10 Vendor ID: AuthenticAMD
CPU family: 16
Model: 9
Stepping: 1
CPU MHz: 1900.206

15 BogoMIPS: 3800.12
Virtualization: AMD-V
L1d cache: 64K
L1i cache: 64K
L2 cache: 512K

20 L3 cache: 5118K
NUMA node0 CPU(s): 0-5
NUMA node1 CPU(s): 6-11
NUMA node2 CPU(s): 12-17
NUMA node3 CPU(s): 18-23

25 NUMA node4 CPU(s): 24-29
NUMA node5 CPU(s): 30-35
NUMA node6 CPU(s): 36-41
NUMA node7 CPU(s): 42-47� �

Output of lscpu� �
1 total used free shared buffers cached

Mem: 129130 3100 126029 0 48 1623
-/+ buffers/cache: 1428 127701
Swap: 0 0 0� �

Output of free -m (after some usage)� �
1 Linux magny1 3.0.0-14-server #23-Ubuntu SMP Mon Nov 21 20:49:05 UTC 2011 x86_64

x86_64 x86_64 GNU/Linux� �
Output of uname -a� �

1 Python 2.7.2+� �
Output of python --version� �

1 mpiexec (OpenRTE) 1.4.3

Report bugs to http://www.open-mpi.org/community/help/� �
Output of mpiexec --version

28

References
Demetrescu and Italiano 2006

Demetrescu, C. ; Italiano, G.F.: Experimental Analysis of Dynamic All Pairs
Shortest Path Algorithms. In: ACM Transactions on Algorithms (TALG) 2 (2006),
no. 4, pp. 578–601

Mattson et al. 2004
Mattson, T. ; Sanders, B. ; Massingill, B.: Patterns for Parallel Programming.
Addison-Wesley Professional, 2004

MPI for Python v1.3 documentation 2012
MPI for Python v1.3 documentation: Design and Interface Overview. http:
//mpi4py.scipy.org/docs/usrman/mpi4py.html. Version:May 2012, Last
checked: May 2012

OpenStreetMap Wiki 2012
OpenStreetMap Wiki: OpenStreetMap License. http://wiki.openstreetmap.
org/wiki/OpenStreetMap_License. Version:May 2012, Last checked: May 2012

Python Project 2012
Python Project: Global Interpreter Lock. http://wiki.python.org/moin/
GlobalInterpreterLock. Version:May 2012, Last checked: May 2012

Weber et al. 2009
Weber, B. ; Müller, P. ; Wonka, P. ; Gross, M.: Interactive Geometric Sim-
ulation of 4D Cities. In: Computer Graphics Forum Bd. 28 Wiley Online Library,
2009, pp. 481–492

29

http://mpi4py.scipy.org/docs/usrman/mpi4py.html
http://mpi4py.scipy.org/docs/usrman/mpi4py.html
http://wiki.openstreetmap.org/wiki/OpenStreetMap_License
http://wiki.openstreetmap.org/wiki/OpenStreetMap_License
http://wiki.python.org/moin/GlobalInterpreterLock
http://wiki.python.org/moin/GlobalInterpreterLock

	Front Page
	Contents
	Abstract
	Introduction
	Project Task

	Traffic Simulation
	Discrete Macroscopic Simulation
	Braking Distance Based Driving Speed Calculation
	Preventing Oscillation with Randomness
	Street Network Adaptation

	Implementation
	Technical Challenges
	Data Source
	Software Architecture
	Visualization

	Parallelization
	Task and Data Decomposition
	Streets4MPI Solution

	Speed and Efficiency
	Measurements
	Lessons and Improvements

	Potential for Future Improvements
	Improved Simulation Model
	Dynamic Shortest Path
	Improved Parallelization

	Summary
	Appendix
	Run Time Data
	Test Machine Hardware Info

	References

		=== 2012-04-04: pickle-based serialization ===

		

		test.osm, 1000 res, 50 steps, 1 node:

		real		44m23.046s

		user		44m17.822s

		sys		0m3.680s

		

		test.osm, 1000 res, 50 steps, 4 nodes:

		real		14m6.164s

		user		54m35.741s

		sys		1m40.930s

		

		test.osm, 1000 res, 50 steps, 8 nodes:

		real		9m46.343s

		user		75m37.056s

		sys		2m20.957s

		

		test.osm, 1000 res, 50 steps, 12 nodes:

		real		9m11.719s

		user		105m35.460s

		sys		4m30.217s

		

		test.osm, 1000 res, 50 steps, 16 nodes:

		real		9m0.204s

		user		136m50.473s

		sys		6m48.298s

		

		

		

		test.osm, 100 res, 200 steps, 1 node:

		real		18m39.199s

		user		18m28.369s

		sys		0m0.356s

		

		test.osm, 100 res, 200 steps, 4 nodes:

		real		8m32.741s

		user		31m30.498s

		sys		2m26.165s

		

		test.osm, 100 res, 200 steps, 8 nodes:

		real		5m47.401s

		user		41m54.001s

		sys		4m7.887s

		

		test.osm, 100 res, 200 steps, 12 nodes:

		real		5m34.219s

		user		59m47.856s

		sys		6m37.881s

		

		test.osm, 100 res, 200 steps, 16 nodes:

		real		5m29.153s

		user		78m23.314s

		sys		8m51.493s

		

		

		

		=== 2012-04-18: compressed serialization ===

		

		test.osm, 1000 res, 50 steps, 1 node:

		real		44m4.473s

		user		44m0.073s

		sys		0m0.392s

		

		test.osm, 1000 res, 50 steps, 4 nodes:

		real		13m51.084s

		user		53m44.994s

		sys		1m29.678s

		

		test.osm, 1000 res, 50 steps, 8 nodes:

		real		9m41.537s

		user		74m32.992s

		sys		2m44.930s

		

		test.osm, 1000 res, 50 steps, 12 nodes:

		real		9m5.765s

		user		104m15.907s

		sys		4m33.449s

		

		test.osm, 1000 res, 50 steps, 16 nodes:

		real		8m56.532s

		user		136m41.953s

		sys		5m54.334s

		

		

		

		=== 2012-04-18: compressed serialization, cPickle ===

		

		test.osm, 1000 res, 50 steps, 1 node:

		real		43m59.562s

		user		43m55.757s

		sys		0m0.300s

		

		test.osm, 1000 res, 50 steps, 4 nodes:

		real		13m58.493s

		user		54m17.048s

		sys		1m29.246s

		

		test.osm, 1000 res, 50 steps, 8 nodes:

		real		9m35.552s

		user		74m12.482s

		sys		2m19.521s

		

		test.osm, 1000 res, 50 steps, 12 nodes:

		real		9m2.020s

		user		103m59.690s

		sys		4m5.683s

		

		test.osm, 1000 res, 50 steps, 16 nodes:

		real		8m49.439s

		user		135m49.861s

		sys		4m58.503s

		

		

		

		=== 2012-04-18: compressed serialization, MPI using serialized data ===

		

		test.osm, 1000 res, 50 steps, 1 node:

		real		44m21.334s

		user		44m18.126s

		sys		0m0.280s

		

		test.osm, 1000 res, 50 steps, 4 nodes:

		real		15m5.995s

		user		58m30.255s

		sys		1m50.927s

		

		test.osm, 1000 res, 50 steps, 8 nodes:

		real		12m0.814s

		user		92m37.643s

		sys		3m17.468s

		

		test.osm, 1000 res, 50 steps, 12 nodes:

		real		12m37.881s

		user		144m7.204s

		sys		6m49.054s

		

		test.osm, 1000 res, 50 steps, 16 nodes:

		real		13m47.411s

		user		208m29.014s

		sys		9m9.486s

		

		

		

		=== 2012-05-02: traffic load as arrays ===

		

		test.osm, 1000 res, 50 steps, 1 node:

		real		30m58.271s

		user		30m54.996s

		sys		0m0.240s

		

		test.osm, 1000 res, 50 steps, 4 nodes:

		real		8m21.201s

		user		32m35.330s

		sys		0m42.775s

		

		test.osm, 1000 res, 50 steps, 8 nodes:

		real		4m25.548s

		user		33m53.327s

		sys		1m19.737s

		

		test.osm, 1000 res, 50 steps, 12 nodes:

		real		3m15.611s

		user		36m20.500s

		sys		2m27.817s

		

		test.osm, 1000 res, 50 steps, 16 nodes:

		real		2m27.817s

		user		36m52.994s

		sys		1m41.966s

		

		

		

		=== 2012-05-02: traffic load as arrays, using MPI allreduce ===

		

		test.osm, 1000 res, 50 steps, 1 node:

		real		30m22.387s

		user		30m19.450s

		sys		0m0.276s

		

		test.osm, 1000 res, 50 steps, 4 nodes:

		real		8m20.850s

		user		32m42.283s

		sys		0m34.670s

		

		test.osm, 1000 res, 50 steps, 8 nodes:

		real		4m23.734s

		user		33m49.991s

		sys		1m7.928s

		

		test.osm, 1000 res, 50 steps, 12 nodes:

		real		3m5.335s

		user		35m15.804s

		sys		1m30.758s

		

		test.osm, 1000 res, 50 steps, 16 nodes:

		real		2m26.309s

		user		36m30.049s

		sys		2m4.456s

		

